

Certificate of Analysis 0871

Date: 12-23-2020

Version: 01

CRM ITAK-858 Certified Reference Material Copper Concentrate Table 1 – ITAK-858 – Certified Values

SL [4] **Element/Unit** Certified Value [1] s [2] S_r [3] U [5] Cu (%) b, m 35.80 0.27 0.22 0.16 ± 0.063 Fe (%) a, c 18.61 0.22 ± 0.14 0.35 0.27 S (%) i 13.81 0.55 0.12 0.54 ± 0.18 Ag $(g/t)^{a,b}$ 74.9 4.2 1.3 ± 1.4 4.0 Au (g/t) e, f, g, h 25.00 0.62 0.55 0.28 ± 0.11 Ni $(g/t)^{a,b}$ 2 2 1 52 ± 0.61 F (q/t) k, n 2795 ± 25 86 60 61 Al (%) b, d, e 1.318 0.022 0.041 0.035 As (q/t) b, p, r 171.1 12.0 9.2 7.8 ± 3.4 Ba (g/t) b, c 50.26 1.13 0.87 0.72 ± 0.32 9.73 0.73 ± 0.35 0.24 0.69

Table 1 – ITAK-858 – Certified Values (cont.)

Element/Unit	Certified Value [1]	s ^[2]	S _r ^[3]	S _L ^[4]	U ^[5]
Na (%) ^{b, c}	0.0441	0.0039	0.0027	0.0028	± 0.0012
P (%) ^b	0.0384	0.0015	0.0011	0.0011	± 0.00046
Pb (g/t) b, q	80.1	4.6	2.1	4.1	± 1.7
Pd (g/t) e	0.1010	0.0076	0.0074	0.0019	± 0.0015
Sb (g/t) b	0.187	0.047	0.037	0.029	± 0.015
Se (g/t) b, r	55.2	3.7	2.2	2.9	± 1.5
Si (%) ^{c, d}	7.02	0.19	0.16	0.095	± 0.039
Sn (g/t) ^b	9.29	0.33	0.29	0.15	± 0.089
Te (g/t) ^b	17.0	1.0	0.90	0.49	± 0.29
Th (g/t) b, t	4.06	0.32	0.21	0.23	± 0.11
Ti (%) ^b	0.092	0.002	0.001	0.002	± 0.0006
U (g/t) ^{b, t}	57.2	4.4	2.3	3.7	± 1.4
V (g/t) a, b	22.8	2.9	0.48	2.8	± 1.1
Zn (g/t) ^{a, b}	18.0	1.8	1.4	1.1	± 0.64

^[1] The Certified Value was calculated according to ISO Guide 35 and ISO 5725-2.

Note: The letters in front of the elements are codes for Analytical Methods used.

Table 2 - ITAK-858 - Informative Values

Element/Unit	Reference Value [6]		
Cd (g/t) ^b	0.16		
Soluble Cu (%) "	0.75		
Pt (g/t) e	0.029		
Tl (g/t) ^b	0.17		

^[6] These values are informative. They were calculated according to ISO Guide 35 and ISO 5725-2 from twenty to forty results from a varying number of laboratories.

^[2] The standard deviation for proficiency assessment was calculated according to ISO 13528 and 5725-2. This standard deviation can be used for control charts for individual analysis (n=1).

^[3] The within-laboratory standard deviation was calculated according to ISO 5725-2.

^[4] The between-laboratory standard deviation was calculated according to ISO 5725-2.

^[5] The combined standard uncertainty of the certified value was calculated according to ISO Guide 35.

DESCRIPTION

ITAK-858 was prepared from a sample of Copper Concentrate donated by a Copper Mining Company from the North of Brazil in 2020.

This Certified Reference Material (CRM) is presented as a fine powder.

INTENDED USE AND INSTRUCTIONS

ITAK-858 provides an important control in analytical data from exploration and can be used as a tool for grade control in routine mining and laboratory operations.

This Certified Reference Material can be used for calibration of analytical equipment, assess and develop new methods, validation of analytical methods, and arbitration – proficiency testing for example.

The bottles/sachets content should be thoroughly mixed before taking samples of ITAK-858.

The Certified Reference Material should be used without pre-treatment. ITAK is not responsible for any changes occurring after opening said bottles/sachets.

The Certified Reference Material should be stored in a dry place and without contact with excessive heat or moisture.

<u>CERTIFICATION AND STATISTICAL EVALUATION OF ANALYTICAL DATA</u>

ITAK-858 was analyzed by twenty specialized laboratories. The statistical evaluation was carried out according to ISO GUIDE 35 and ISO 5725-2, using: identification and treatment of outliers, stragglers and technically invalid data, certified value calculation, standard deviation calculation, and extended standard uncertainty calculation.

The Technical Report: RT-029/2020 STD contains full details of all phases of manufacturing, certifying results, participating laboratories, and the statistical evaluation.

Note: This report is available on the ITAK database for CRM users.

ANALYTICAL METHODS

The methods used on the certification of CRM ITAK-858 are mentioned as follows:

- a: Acid digestion Method (HCl, HNO₃, HF) and determination by Atomic Emission Spectrometry (ICP).
- **b**: Acid digestion Method (HCl, HNO₃, HF, HClO₄) and determination by Atomic Emission Spectrometry (ICP).
- c: Fusion Method and determination by Atomic Emission Spectrometry (ICP).
- d: Fusion Method and determination by X-Ray Fluorescence.
- e: Fire Assay Method and determination by Atomic Emission Spectrometry (ICP).
- f: Fire Assay Method and determination by Atomic Absorption Spectrometry (AAS).
- g: Extraction by DIBK and determination by Atomic Absorption Spectrometry (AAS).
- h: Fire Assay Method and determination by Gravimetry.
- i: Infrared Analyzer (LECO).
- j: Fusion Method and determination by Titration.
- k: Fusion Method and determination by Ion Chromatography.
- L: Acid digestion Method (HNO₃) and determination by Titration.
- m: Acid digestion Method (HNO₃, HClO₄) and determination by Titration.
- n: Combustion Method and determination by Ion specific electrode.
- o: Acid digestion Method (HCl, HNO₃, HF, HClO₄) and determination by Atomic Emission Spectrometry (ICPMS).
- p: Acid digestion Method (HCl) and determination by Atomic Absorption Spectrometry (AAS).
- **q**: Acid digestion Method (HCl, HNO₃, HF, HClO₄) and determination by Atomic Absorption Spectrometry (AAS).
- r: Aqua Regia digestion Method (HCl, HNO₃) and determination by Atomic Emission Spectrometry (ICP).
- s: Aqua Regia digestion Method (HCl, HNO₃) and determination by Atomic Absorption Spectrometry (AAS).
- t: Fusion Method and determination by Atomic Emission Spectrometry (ICPMS).
- **u**: Acetic Acid leaching Method and determination by Atomic Absorption Spectrometry (AAS).

PERIOD OF VALIDITY

This CRM certification is valid until: December 23, 2030.

CERTIFICATE REPRODUCTION

This certificate must not be modified and may only be reproduced in its entirety and without change.

Bráulio de Freitas Pessoa Chemist – CRQ 02.202.008 Technical Director